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Conjugate Silhouette Nets

W. L. F. Degen

Abstract. Conjugate nets, Laplace transformations and projective
translation surfaces are exploited for CAGD purposes. The latter are
shown to be equivalent with conjugate nets having degenerated Laplace
transforms. Relations to conjugate nets with planar silhouettes, supercy-
clides and Dupin cyclides are given.

§1. Conjugate Nets and their Laplace Transforms

Conjugate nets play an important role in classical differential geometry, espe-
cially because of their projective invariance (see [3]). Representing a surface
in d-space by homogeneous coordinates

S ... x:D-.1d+l, DCIR2, xECo[D], (1)

where D is an open connected domain of the "parameter plane" R 2 , then a
conjugate net is defined by the validity of a Laplacian equation

xuV + axu + bx, + cx = 0 (2)

with certain functions a, b, c E Co [D]. To exclude planar surfaces

dimspan(XzXu,xV,zU,XVV) > 3, d> 3 (3)

is assumed throughout. The geometric meaning of (2) for d = 3 is that
the characteristic lines of the tangent planes along one isoparametric line are
tangent to the other. A second characterization is that the two tangents to
the isoparametric lines have a harmonic cross ratio with the two asymptotic
tangents.

The most important property of conjugate nets is that they have in both
isoparametric directions a Laplace transformed net (Laplace transform) which
is defined by the striction points of the two developables generated by the
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tangent planes along the net curves (isoparametric lines). Analytically, they
are given by

L,,(x) ... y= x, + bx, (4)
!:(x) ... z:=x,+ ax. (5)

Indeed, by (2), we get

y, = hx - ay, (6)

z,, = kx - bz (7)

with

h=bv+ab-c, k=a, +ab-c (8)

being the so-called Darboux invariants. Eqn. (6) shows that the line x A y is
tangent to the u-curve (isoparametric line with v =const, u varying) on the
surface (X)D as well as tangent to the v-curve on (Y)D; analogously x A z is
tangent to the v-curve on (x)D and the u-curve on (Z)D.

In euclidean differential geometry, conjugate nets owe their importance
to the fact that the curvature lines on every surface are conjugate (except
at umbilic points). Thus, for CAGD applications, one can profit from the
theory of conjugate nets since, for instance, the two families of circles on a
Dupin cyclide or the net of profile curves and meridian circles on a surface of
revolution is a conjugate net.

In this paper we deal with the special case that the two Laplace transforms
degenerate into curves. Assuming that the net curves have nowhere asymptotic
directions, i.e.

xAxA•^XU#0, xAxvAXVv#ý40, (9)

then the degeneration conditions y A yu A y, = 0 and z A z. A z, = 0 imply

h=0, k=0 for all(u,v) GD. (10)

Definition 1. A conjugate net in 3-space satisfying (10) with regularity con-
ditions (3), (9) is called a conjugate silhouette net.

This notation is justified since by (4), (6), (10) all u-tangents along a
v-curve meet at the fixed point y, thus building up a general cone with apex
y. Thus the v-curve x(uo, v) can be considered as a silhouette on the surface
S by central illumination from y. Similarily the u-curves are silhouette lines
by central illumination from z.

On the other hand, it is easy to see that a net of silhouette lines on a
surface whereby the centers of illumination vary on two curves is automatically
conjugate, provided that the generators of the enveloping cones are tangent to
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the net curves. Thus, the equations (2), (10) characterize conjugate silhouette
nets (up to degenerated cases).

At first glance, this class of surfaces seems to be very restricted. But
this is not true: it comprises many subclasses of surfaces considered in CAGD
literature such as Dupin cyclides ([2,4,7]), supercyclides ([1,5,8,9]), nets with
planar silhouettes ([6]) etc.. As for all of these examples, the whole class of
conjugate silhouette nets is well-suited for CAGD applications, in particular
for geometric modelling purposes because of their simple blending properties:
Putting two of them together along a common net curve immediately yields
a Gl-continuity, once the corresponding centers of illumination coincide.

But there is still another reason making these surfaces worth consider-
ing in CAGD: They admit a very simple generation as so-called "projective
translation surfaces", as will be derived in the next section.

§2. Projective Translation Surfaces

Let

L, ... P : I 1,-'-R•dl, £2 ... q : 12 -- Rd+l (11)

be two C°-curves in d-space represented also in homogeneous coordinates
(11, 12 being two open nonvoid intervals of IR). Then one gets a surface S (1)
simply by setting

S ... x(u,v) :=p(u) +q(v), (u,v) cI, x 12:= D (12)

Definition 2. Surfaces defined by (12) via two curves (11) are called projective
translation surfaces.

This definition generalizes the usual euclidean (or affine) definition of
translation surfaces, where the same formula (12) is used but interpreted in
affine (non-homogeneous) coordinates. So one curve can be considered to
move along the other thus sweeping out the surface. In the projective case,
the generating point x(u, v) always lies on the line p(u)Aq(v) joining these two
points of C1 and C2 independently. It must be noticed that the normalizations
are essential (not arbitrarily to be choosen like usually when dealing with
curves): they determine the position of that point x(u, v) on the line p(u) A
q(v).

Now we can establish one of our main results:

Theorem 1. Every conjugate silhouette net is a projective translation sur-
face, and the net curves correspond to the isoparameter lines in the represen-
tation (12).

Proof. We have, by definition, h = 0, k = 0, and hence in particular

au = bv. (13)
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Assuming D to be simply connected, we conclude that there exists a C'-
function f : D --* R with

f.=b, f,=a. (14)

Taking p := ef, we calculate Pu = pb, Pv = pa and Puv = (pb), = p(ab+b,) =
pc, the latter observing (8), (10). Since p • 0 in D, we can renormalize
Y:= px, obtaining

Y = (puv - pc)z + (pu - pb)x. + (pv - pa)x., (15)

and thus

Y = 0. (16)

This equation immediately yields a representation (12) by integration (possi-
bly restricted to a rectangle I, x 12 within D). 0l

Up to now we think of that renormalization as always having been done,
so the Laplace equation (2) has the coefficients

a=0, b=0, c=0. (17)

Therefore, the Laplace transforms (4) and (5) are now given by

dp(u)

£.(x) ... z(v) dq(v) (19)
dv vEI 2 .

Calling these curves the projective hodographs of p and q respectively, we
can state

Corollary. The Laplace transforms of a conjugate silhouette net £ are the
projective hodographs of the generating curves C1, C2 of L (considered as a
projective translation surface).

§3. Axial Silhouette Nets

Definition 3. A conjugate silhouette net is called axial if the generating
curves C1, C2 in its representation (12) as a projective translation surface are
(parts of) straight lines. These lines are called the first and the second axis of
the net.

The conditions for axial conjugate silhouette nets are that p,p',p" and
likewise q, q', q" must be linearly dependent (a prime at p indicating deriva-
tion with respect to u and at q with respect to v). Assuming p, p' and likewise
q, q' to be linearly independent (otherwise the point would be stationary) we
have

p" = ap +flp', q" = -yq + bq' (20)

with some C°-functions a, 6 of u and -y, 6 of v characterizing axial nets.
This has many consequences; most of them we proved earlier for super-

cyclides and for nets with planar silhouettes [5,6]. Now we give the result for
the general case of axial silhouette nets:
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Theorem 2.
a) All the net curves (of both families) are planar curves,

b) The planes of the net curves of each family belong to a pencil,

c) The axes of these two pencils coincide with the second and the first axis
of the net (i. e. the plane of a curve of the first [second] family passes
through the second [first] axis,

d) The apexes of the envelopping cones (the "light centers") along a u-curve
[v-curve] lie on the second [first] axis,

e) Any two u-curves [v-curves] are projectively equivalent to each other.

Proof: We perform the proofs only for the u-curves; the assertions with
respect to the v-curves follow analogously.

a): From (12), (20) we derive

Zu P', Zuu= ap + Op', (21)

S= (a' + a,3)p + (C + p' + / 2)p'. (22)

Hence xu A zuu A xuuu = 0, meaning that the u-curves are planar.
b), c): Eqns. (21) show that p, p' are contained in the plane x A xu A XUU

of this u-curve; but p, p' span the first axis.
d): The apex of the envelopping cone is given by (21) as p'. Hence it is

lying on the first axis.
e): Assumption (9) implies a 5 0 for all u E 11. Thus, xu and xuu can

be eliminated from (21) and with this Eqn. (22) yields

Xuuu = ( T+@)tuu + ( a/3+a+)3',)Xu. (23)

Thus the coefficient of the fundamental equation (see [3]) do not depend on the
second parameter v; this means geometrically that all u-curves are projectively
equivalent. 0

For CAGD purposes rational (and polynomial) surfaces are of particular
interest. The explicit representation (12) makes it very easy to pick out ratio-
nal surfaces from that general class: The only thing one has to do is to insert
rational representations for p(u) and q(v). We restrict this procedure to axial
nets, and derive from it the (rational) B~zier representation.

Theorem 3. For any pair of planar rational curves C1 and C2 , there exists
an axial conjugate silhouette net having its u-curves projectively equivalent to
C1 and its v-curves projectively equivalent to C2 . The axes can be arbitrarily
prescribed as two skew straight lines.

Proof: Let C1, C2 be represented in planar homogeneous coordinates by
triples of linearly independent polynomials

C1 ... xi=fi(u)(i=0,1,2), C2 ... xi=gi(v)(i=0, 1,2). (24)
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Furthermore, let the axes be spanned by vectors a, b E ]R 4 and c, d G 1R4

resp. Then det(a, b, c, d) 0 0 since the axes are assumed to be skew. With
this we can set

1 901
p(u) 1 (f,(u)a+f 2(u)b), q(v) (gi(v)c+g 2(v)d) (25)

getting the desired axial net S by (12) (restricted to intervals 11,12 C R
where fo(u) resp. go(v) have no zeros). Now, indeed, the u-curves are planar
and projectively equivalent to C1 since, for fixed v = vo, we have 5(u) =
fo(u)p(u) = fo(u)q(vo) + fl(u)a + f 2 (u)b so that fi(u) are the coordinates
with respect to basis q(vo), a, b. The proof for the v-curves follows the same
line, mutatis mutandis. 13

Obviously, the representation (25) is not unique. But we can immediately
derive from (12) and (25) the Bdzier representation of S: First renormalize
(12) with the factor fo(u)go(v) getting

Y(u,v) = go(v)(f1(u)a+f 2(u)b) + fo(u)(gi(v)C+g 2 (v)d), (26)

and then we expand the polynomials f (u) and gi(v) with repsect to the Bern-
stein basis

n m

fi(u) •-•ai,jBy(u), gk(v) = A- k,lB3(v), (27)
j=0 1=0

getting the usual homogeneous Bdzier representation

v(uV) = bjiB7(-)Bm (v) (28)
j=0 1=0

with the control points

bj,l = 03o,t(aija + a 2,jb) + ao,j ()31, c + 032,1d). (29)

Since these calculations can be done also backwards, we obtain

Corollary. The conditions (29) for the control points characterize a (n, in)-

rational B1zier surface (28) to be an axial conjugate silhouette net.

§4. Applications to Dupin Cyclides

Dupin cyclides are special kinds of supercyclides [5], and therefore they should
have representations as axial conjugate silhouette nets so far they have fourth
order and skew axes. However, their usual representation starts from the
midpoint curves Y(u) and Z(v) of the two families of envelopping spheres
and results in

-D ... X(u, v) = r 2(v)Y(u) + ri(u)Z(v)
r2(v) + rl(u) (30)
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where rl, r2 denote the corresponding radius functions. Though this is also a
sum of two vectors it has neither the form (12) nor are the components parts
of straight lines.

Thus, the question arises of how to transform (30) into (12). The first
step to solve this problem consists in passing to homogeneous coordinates
X = (x0,0x,x 2 ,X 3)T

X=Px' p •lR\{O} (31)

(i.e. x0 = p.1, xi = p. Xi (i = 1,2,3)) and to take in the present case
p =1 + - yielding indeed (12)

PM rl(u) q(v) r2(v) (32)

1 )1r-• Y(u) r--2(u)

However, the curves p and q describe an ellipse and a hyperbola as before.
Obviously, another representation of the same kind (12) must satisfy

P(u) =p(u) +c, 4(v) =q(v) -c (33)

with a constant vector c.
Starting with the explicit representations

1 1

1-u 2  1 + v 2

Y(u) = u Z(v) = (34)2u 0

+uP 2v

0 _V2-PW

(with some shape parameters d, p, c, jo' < 1, w = v1 - a 2) and observing the
corresponding radius functions

r1(u) = fo(u) , go(v) (35)
1+ U2 ' 2- 1

whereby

fo(u) = (1 + u 2)dp - (1 - u 2)pa, go(v) = (1+v 2)p- (1-v 2 )d,

we finally obtain

10 (
P(u)-fu) ((I + U2) A foM))d + 0(36)

A M da 0 2pwu

0) 0
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and

gou) V2) + 1 go(v)) d 2 ( 2 0w(3JJ

0 2pu~v

with
C 1. (1, 0, 0, 0 )T

Thus we proved

Theorem 4. The formulas (36), (37) (inserted into (12)) yield an explicit
representation of nonparabolic Dupin cyclides with skew axes as axial con-
jugate silhouette nets with respect to a suitable (homogeneous) coordinate
system.
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